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Abstract
A formal proof of the stability of a widely applicable form of the laser diode rate
equations is presented. The conditions under which this proof holds provide
guidance to designers and modellers of laser diodes in the identification of
ranges of parameter values that preserve stability. The proof requires that
there is some non-zero threshold for gain in order to guarantee stability. Laser
models incorporating Purcell enhancement factors are found to be stable for all
physically allowed values of the factor.
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Mathematics Subject Classification: 78A60

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An extremely desirable feature of laser diodes for applications in high bit rate optical
communications is the ability to modulate the light output at high frequency and with high
linearity by the addition of a modulated current to the bias current. There is a continuing
research and development effort to produce single mode, low chirp, linear response laser
diodes with high quantum efficiency and low threshold [1, 2]. Some of that research effort
has been based on a consideration of the physical and mathematical models used to simulate
and understand the behaviour of these devices [3–5]. Identification of those parameters in the
model that limit the modulation speed or that introduce chirp or nonlinearities combined with
an understanding of the physics and structure of the devices which are represented by those

1751-8113/09/175101+20$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/17/175101
mailto:p.dower@ee.unimelb.edu.au
mailto:p.farrell@ee.unimelb.edu.au
mailto:k.hinton@ee.unimelb.edu.au
http://stacks.iop.org/JPhysA/42/175101


J. Phys. A: Math. Theor. 42 (2009) 175101 P M Dower et al

parameters guides the design and manufacture of improved devices. An important question
[6] that arises as a result is that of stability: over what range of parameter values is the model
which simulates a laser stable? If the model accurately portrays the behaviour of the laser
diode this range will also predict the range over which the physical laser diode is stable.

Research into the possibility of engineering the dynamics of laser diodes by the use
of the Purcell effect has gained momentum due to recent experimental progress [2, 7]. A
simple explanation of how the Purcell effect may be used to modify laser dynamics is that
since the rate at which the carrier density within the cavity is changed is controlled by the
carrier spontaneous emission rate, a laser diode with faster response time can be engineered by
increasing the spontaneous emission rate through quantum electrodynamic effects via design
of the cavity. This enhancement gives rise to questions of stability.

Unstable operation is desirable for some applications, particularly those involved in the
study or application of chaotic dynamics [8–11]. In this case the ability to identify regions
where unstable behaviour is likely is also valuable. Such dynamics can be achieved by
reflecting some of the output light back into the cavity, thereby modifying the system dynamics
via time-delayed feedback [12, 13]. Such time-delayed systems are not considered here.

Another application of modulated laser diodes for which it is desirable to understand
stability is their use as pump sources for Raman amplification [14, 15]. Stable operation
at relatively high speed modulation for very high power diodes is required for transient
suppression in Raman amplifiers, particularly for the case of co-propagating signal and pump
operation. The design of high quality control systems relies on an understanding of these
stability properties.

The stability of laser diode models is thus of particular interest in three main operational
contexts, which may be summarized as follows:

(a) static operation, due to a static drive current [16, 17];
(b) quasi-equilibrium modulation, in which the laser is modulated at a rate well below its

dynamic response time [18];
(c) dynamic high speed modulation [17].

This paper focuses on stability issues associated with (a) and (b), in which the laser diode is
modelled via a reasonably general mathematical form for the coupled nonlinear rate equations,
and restricted via specific conditions imposed upon the attendant functions and parameters
appearing in those equations. The main result of the paper allows for the conclusion of two
specific types of stable behaviour, both of which are described below:

• ‘Input-to-state stable’ (ISS). A laser diode or model is ISS if, given any fixed input current
limit, all current input waveforms inviolate of that limit give rise to photon and carrier
density time functions that are also ultimately limited, with the limits obtained being
independent of the initial photon and carrier densities, but scaling with the aforementioned
input current limit. (ISS [19] generalizes global asymptotic stability (GAS) [20, 21] to
non-autonomous dynamical systems with L∞ bounded inputs.)

• ‘Stationary-point stable’ (SPS). A laser diode or model is SPS if, given a fixed and constant
input current limit and any initial photon and carrier density, the time evolution of the
photon and carrier densities for any constant input current (satisfying the aforementioned
current limit) converge to a unique stationary point in phase space. (SPS generalizes GAS
to capture the stability of any stationary point arising from the application of a constant
input. SPS is a special case of the Cauchy gain property [22].)

Whilst it is widely recognized that laser diodes are in practice both ISS and SPS over a wide
range of operating conditions, a formal proof of this for a sufficiently general model has not
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been published [23, 24]. (We note that in previous work by Mena et al, where a number of
specific models are examined, the possible existence of limit cycles in the dynamics is not
excluded [23].) The generality of the main result means that it provides a simple test for
stability in the sense of ISS and SPS for existing and new candidate laser diode models.

Section 2 introduces various models of laser diodes. A generic model which incorporates
the most important features of the typical model is presented in section 3. In section 4, the
main result of the paper is stated along with the conditions under which the result is valid. The
proof of the stability of this generic model is given in section 5. A summary of the conclusions
is the subject of section 6.

2. Specific laser diode models

2.1. Model 1

Laser diodes are typically modelled by a set of coupled nonlinear rate equations for the carrier
density N(t) and the photon density S(t) within the laser cavity, a particular example of
which is

Ṡ(t) = g0�(N(t) − Nt)

1 + εS(t)
S(t) − S(t)

τph
+ β

�N(t)

τsp
, (1)

Ṅ(t) = I (t)

eV
− g0(N(t) − Nt)

1 + εS(t)
S(t) − N(t)

τsp
, (2)

where g0 is the gain coefficient, � is the modal confinement factor, Nt is the carrier density
required for transparency, ε is a saturation parameter, τph is the average time spent by a
photon in the cavity, β is the fraction of spontaneous emission into the lasing mode, τsp is the
spontaneous emission lifetime, V is the volume of the active region, e is the electronic charge
and I (t) is the modulated current. Further details can be found in [25, 26] (for example).

The phase of the output light field can be determined from the spectator equation

ϕ̇(t) = α

2
g0�(N(t) − Nt)

which models the changing phase of the light field due to the changing refractive index of the
cavity with carrier density. The amplitude of the light field can be determined by taking into
account the rate at which photons escape the cavity. Here α is the linewidth enhancement
factor.

Model 1 is defined by (1) and (2).

2.2. Model 2

Variations on these equations exist which introduce additional physics or which treat the
physics in alternative ways. For example, Lau et al investigated the behaviour of a set of
differential equations to test the virtue of using the Purcell effect to enhance the dynamics of
a quantum well laser diode [2]. The differential equations used in that work are reproduced
here as

Ṡ(t) =
�g0 ln

(
N(t)

Nt

)
S(t)

1 + εS(t)
− S(t)

τph
+ βF�BN(t)2, (3)

Ṅ(t) = J (t) −
g0 ln

(
N(t)

Nt

)
S(t)

1 + εS(t)
− (βF + 1 − β)BN(t)2 − CN(t)3. (4)
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Here, J (t) is the injection current density, the gain involves a logarithm of the carrier density
and there are more complicated relaxation terms characterized by B and C. The solutions
to these equations are integrated over the active region. In this example the gain term is
proportional to ln (N(t)/Nt) which may be expanded to lowest order as N(t) − Nt to give
gain terms in the same form as model 1. Bimolecular (N(t)2) and Auger (N(t)3) relaxation
terms are used in place of the simple relaxation term above. The factor of greatest interest to
Lau et al was the Purcell factor F which is used to characterize the change of the spontaneous
emission rate due to the details of the cavity.

Model 2 is defined by (3) and (4).

2.3. Model 3

Another variant was used by Ngai and Liu [6] to demonstrate the onset of chaotic behaviour
in a modulated laser diode. The rate equations used in that work may be written as

Ṡ(t) = �g0 (N(t) − Nt) S(t)

1 + εS(t)
− S(t)

τph
+ β�C1N(t)2, (5)

Ṅ(t) = I (t)

eV
− g0 (N(t) − Nt) S(t)

1 + εS(t)
− C0N(t) − C1N(t)2 − C2N(t)3 − DrN(t)

11
2 . (6)

Here the parameters C0, C1, C2 and Dr are the carrier recombination coefficient, the carrier
bimolecular recombination coefficient, the Auger recombination coefficient and the carrier
leakage coefficient, respectively. Details of typical values for these parameters can be found
in [6] and references therein.

Model 3 is defined by (5) and (6).

2.4. Model 4

A common alternative to model 1 follows by the substitution of an alternative saturation term.
In particular, the term (1 + εS)−1 is replaced with 1 − εS. It is evident that both of these
forms are low-order approximations to some unknown function of S and possibly N that is the
true saturation factor. A set of equations identical to those in (1) and (2) with the saturation
factor 1 − εS has been published in [3, 5, 27]. The physical effects of these saturation models
have been investigated in [28]. It may be noted that the aforementioned forms are lower order
approximations to the form (1 + εS)−

1
2 derived by Agrawal [29].

Model 4 is defined by (1) and (2) with the saturation factor (1+εS)−1 replaced by (1−εS).

2.5. Model 5

More recently Ahmed and El-Lafi included a saturation factor similar to 1 − εS but which
included a dependence on the carrier density [24]. The equations used by them are written
here as

Ṡ(t) = (G(t) − Gth)S(t) +
C

τsp
N(t), (7)

Ṅ(t) = I (t)

e
− A(t)S(t) − N(t)

τsp
, (8)
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where

G(t) := A(t) − B(t)S(t),

A(t) := g0

V
(N(t) − Nt) ,

B(t) := B0 (N(t) − Nt) .

Here B plays a similar role to that played by ε in model 4 with the additional complication of
dependence on the carrier density. Further details and typical values for the parameters in (7)
and (8) may be found in [24]. While (7) and (8) have many similarities in appearance to the
other laser diode rate equations, they are in fact quite different, that difference to be elaborated
on below.

3. A generic laser diode model

3.1. Generic model

We can generalize models 1–3 via the following pair of differential equations:

ẋ1 = θ(x1)φ(x2) − ϒ1(x1) + ζψ(x2), (9)

ẋ2 = −θ(x1)φ(x2) − ϒ2(x2) − ψ(x2) + u. (10)

Here, x1 and x2 are scaled variables representing the photon density and carrier density
respectively, θ, φ,ϒ1, ϒ2 and ψ are functions of x1 or x2 which represent respectively
generalized notions of saturation, gain, photon relaxation, non-radiative carrier relaxation
and radiative carrier relaxation as appropriate, and u is a scaled current density. ζ represents
the effective spontaneous emission factor which captures the difference between the rate of
carrier relaxation and the rate of spontaneous emission into the lasing mode. The major
limitation of this form is the requirement that the gain terms factor into a function which
depends upon the carrier density only, and a function which depends on the photon density
only.

The functions and parameters appearing in the differential equations (9) and (10) are
restricted to satisfy a number of technical assumptions. These assumptions represent sufficient
conditions for stability of the generic model, in the sense of the main result presented in the
following section. In order to state these assumptions, a number of function classes are
utilized, in particular, K0,K and K∞. These are defined as follows: a scalar-valued function
defined on [0,∞) is of class K0 if it is continuous, zero at zero, and non-decreasing, of class K
if it is class K0 and strictly increasing, and of class K∞ if it is class K and radially unbounded.
(Hence, K0 ⊃ K ⊃ K∞.) In the statement of the main result, the class KL of scalar-valued
functions on [0,∞)2 is of interest. There,

KL :=
⎧⎨⎩β : R�0 × R�0 �→ R�0

∣∣∣∣∣∣
β(·, t) ∈ K for each fixed t � 0

β(s, ·) is decreasing for each fixed s � 0
and limt→∞ β(s, t) = 0

⎫⎬⎭ .

Elsewhere, Rn
�0 denotes the closed positive orthant of Rn. Rn

>0 denotes the corresponding
open set. With this notation in place, the technical assumptions restricting the functions and
parameters of (9) and (10) are stated in table 1.

The generic model is thus defined by the differential equations (9) and (10) as restricted
by assumptions (11)–(19) of table 1. From the point of view of notation, it is convenient to
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Table 1. Assumptions restricting rate equations (9) and (10).

Function or parameter Assumption

θ, ϒ1 (saturation, photon relaxation) θ ∈ K ∩ C1(R�0) (11)
ϒ1 ∈ K∞ ∩ C1(R�0) (12)
(ϒ1/θ)′ (s) > 0 ∀ s ∈ R>0 (13)
L := lims→0+ (ϒ1(s)/θ(s)) > 0 exists (14)

φ (gain) φ(· + s) − φ(s) ∈ K∞ ∩ C1(R�0) ∀ s ∈ R>0 (15)
c := φ−1(0) > 0 exists (16)

ϒ2 (non-radiative carrier relaxation) ϒ2 ∈ K0 ∩ C1(R�0) (17)

ψ (radiative carrier relaxation) ψ ∈ K∞ ∩ C1(R�0) (18)

ζ (effective spontaneous emission factor) ζ ∈ (0, 1) (19)

denote this generic model by the symbol G, and to write an integrated phase-space trajectory
explicitly as the function x : R�0 �→ R2, where

x = Gx◦ [u] :=
[
x1(·)
x2(·)

]
∣∣∣∣∣∣∣∣∣∣∣∣

equations (9) and (10) hold, subject

to assumptions (11)–(19), with[
x1(0)

x2(0)

]
= x◦ ∈ R2

>0

with u(t) given, for all t � 0

(20)

where x◦ ∈ R2
>0 and u : R�0 �→ R>0 denote respectively an initial density vector and a

forcing input function.
It is important to emphasize that the functions and parameters θ, φ,ϒ1, ϒ2, ψ and ζ

that appear in the generic model (20) represent generalized notions of saturation, gain, photon
relaxation, non-radiative carrier relaxation, effective spontaneous emission factor and radiative
carrier relaxation. (Here, by ‘radiative’ we mean radiating into the lasing mode.) Other
models may be of the form of (20), but may include terms that do not carry these specific
physical meanings. However, this does not affect the applicability of the main result that is
presented.

3.2. Qualitative discussion of assumptions (11)–(19)

The main result of this paper is predicated on the functions and parameters of equations (9)
and (10) satisfying assumptions (11)–(19) listed in table 1. Whilst physical interpretations
may be assigned to these assumptions, it is important to stress that these assumptions only
represent sufficient conditions for the main result to hold. No assertions regarding necessity
are made here. Consequently, such physical interpretations cannot be regarded as definitive
requirements for the main result to hold, as necessary and sufficient conditions required for
a proof could well be weaker than the stated assumptions (11)–(19). In any case, a physical
description of these assumptions follows:

• Both saturation θ and photon relaxation ϒ1 should (strictly) increase with photon density,
as stated in assumptions (11) and (12). Unlike photon relaxation, saturation can roll off at
higher photon densities, although this is not a requirement. In comparative terms, photon
relaxation should always exceed saturation, both in magnitude and in normalized growth
rate, as stated in assumptions (13) and (14) respectively.

6
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• Gain φ should (strictly) increase with carrier density without rolling off, as stated in
assumption (15). For low carrier densities, the gain should be negative, and should
increase through zero at some transparency carrier density, as stated in assumption (16).

• Non-radiative carrier relaxation ϒ2 should not (strictly) decrease with increasing carrier
density at any point, as stated in assumption (17).

• Radiative carrier relaxation ψ should (strictly) increase with carrier density without rolling
off, as stated in assumption (18).

• Spontaneous emission must occur, with some fraction of the emitted photons entering the
lasing mode, as stated in assumption (19).

Continuous differentiability of all functions listed in table 1 is required to ensure existence
of the corresponding derivatives and to guarantee local existence of solutions (via Lipschitz
continuity) for the generic model (20).

4. Main result

4.1. Behavioural properties

The main result concerning the behaviour of the generic model (20) will be stated in terms
of three behavioural properties, well-posedness, input-to-state stability and stationary-point
stability. These properties are defined as follows.

4.1.1. Well-posedness. Generic model G is well-posed if for any initial density vector
x◦ ∈ R2

>0 and any input forcing function u : R�0 �→ R>0 (measurable, with ‖u‖∞ < ∞),
there exists a unique phase-space trajectory x(·) that solves the initial value problem defined
by (20) for all time t � 0 and remains confined to the open positive orthant R2

>0.

4.1.2. Input-to-state stability. Generic model G is input-to-state stable [19] if there exist
functions γ ∈ K and β ∈ KL such that

|x(t)| � γ (‖u‖∞) + β(|x◦|, t), x := Gx◦ [u]

for all initial density vectors x◦ ∈ R2
>0, all inputs u (measurable, with ‖u‖∞ < ∞), and all

times t � 0.

4.1.3. Stationary-point stability. Generic model G is stationary-point stable if for each
constant forcing function u(t) := U ∈ R>0, t � 0, there exists a unique x̄U ∈ R2

>0 such that

0 = lim sup
t→∞

|x(t) − x̄U | , x := Gx◦ [u]

for all x◦ ∈ R2
>0. (SPS is a special case of the Cauchy gain property [22].)

4.2. Statement

The main result of this paper may be stated simply as follows:
The generic model of (20) is

(I) well-posed;
(II) input-to-state stable;

(III) stationary-point stable.

7
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Table 2. Generic model functions for selected laser diode models.

Generic Model 1 Model 2 Model 3

x1 S/(�Nt ) S/(�Nt ) S/(�Nt )

x2 N/Nt N/Nt N/Nt

θ(x1) �x1(1 + ε�Ntx1)
−1 �x1(1 + ε�Ntx1)

−1 �x1(1 + ε�Ntx1)
−1

φ(x2) g0(x2 − 1) g0 ln(x2) g0(x2 − 1)

ϒ1(x1) x1/τph x1/τph x1/τph

ϒ2(x2) 0 CN3
t x3

2 C0x2 + N2
t C2x

3
2 + (Dr/Nt )(Ntx2)

11
2

ζ β Fβ(Fβ + 1 − β)−1 β

ψ(x2) x2/τsp NtBx2
2 (Fβ + 1 − β) C1Ntx

2
2

u I/(eV Nt ) J/Nt I/(eV Nt )

4.3. Qualitative description

The main result simply states that (I) the general model always has a well-defined solution
for the initial conditions and forcing functions of interest, (II) bounded forcing functions
always give rise to ultimately bounded trajectories in phase space and (III) any constant
forcing function defines a unique, globally attracting equilibrium for those phase-space
dynamics.

4.4. Application to models 1–3

The proof of stability for any particular laser diode model of the form of (9) and (10) rests on
whether assumptions (11)–(19) are satisfied by that model. For the cases considered in this
paper, this is readily determined by simple inspection and consideration of the various terms
appearing in table 2. One can immediately see that the saturation factor used in model 4 causes
θ for that model to be a decreasing function for sufficiently large values of the argument, in
contradiction to the requirement of (11). Inspection of the form of θ for the other models in
table 2 shows that the use of the saturation factor (1 + εS)−1 produces a θ which satisfies all
requirements of (11).

Assumptions (11)–(14) place restrictions on the physical parameters appearing in θ and
ϒ1. In fact, all the models listed in table 2 can be readily shown to satisfy all the requirements
of assumptions (11)–(14) provided that ε > 0, � > 0, Nt > 0 and the applied current is
positive, for all physically allowable values of the remaining parameters. The proof requires
that there is some gain saturation and some non-zero threshold for gain, namely assumptions
(11) and (16), in order to guarantee stability. It is interesting to note that similar observations
have been made previously by appeal to the observed behaviour of numerical solutions to
similar models [30]. The requirement � > 0 is physically essential since � = 0 implies that
there is no physical overlap between the gain region and the lasing mode.

Model 2 differs from model 1 in the forms of φ,ϒ2, ζ and ψ . A comment on the
dependence of ζ and ψ on the Purcell factor F is in order since the motivation for the study by
Lau et al was to determine the feasibility of enhanced dynamics in a laser diode by control of
the Purcell factor. Since F is the factor by which the spontaneous emission is either increased or
decreased, it is evident that 0 < F < ∞. Since β is defined as the fraction of the spontaneous
emission which is coupled to the lasing mode, β must satisfy 0 < β < 1. ψ and ζ satisfy the
requirements of assumptions (18) and (19) and as a result there is no additional restriction on
the values of F or β if stability is required.

8
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4.5. The problem with models 4 and 5

It is important to note that models 4 and 5 reported in section 2 do not fit the generic model
described by (20).

In the case of model 4, it may be noted that the corresponding rate equations are of the
form of (9) and (10), with x1 = S/(�Nt), x2 = N/Nt, θ(x1) = �x1(1 − ε�Ntx1), φ(x2) =
g0(x2 − 1), ϒ1(x1) = x1/τph, ϒ2(x2) = 0, ζ = β,ψ(x2) = x2/τsp and u = I . However, this
selection is not compatible with the listed assumptions (11)–(19). In particular, it is clear that
θ is not strictly increasing as required by assumption (11). Hence, the stability result presented
in this paper does not apply to model 4. This does not mean that model 4 is unstable. We
emphasize that the restrictions placed on the generic model are sufficient conditions for the
stability result presented in this paper.

In the case of model 5, it may be observed that the attendant rate equations (7) and (8) do
not fit the form of the generic model equations (9) and (10). In particular, the asymmetry of
the gain terms in the equations for S and N and the dependence of the saturation term on the
carrier density does not allow simultaneous factorization of the gain terms θ and φ and the
relaxation terms ϒ1 and ϒ2 into functions of S and N only. Consequently, the stability result
presented in this paper does not apply to model 5.

4.6. Other laser diode models

There are many other forms of the laser diode model that appear in the literature. The
applicability of the main result to those models depends on whether those models can be
considered as special cases of the generic model (20) presented here. This means that model
in question must satisfy the structure of (9) and (10), with the functions and parameters
thus defined satisfying assumptions (11)–(19). For example, models with time-delayed or
distributed feedback (for example, [12, 13]) are not consistent with the form of (9) and (10).
However, those models without such feedback often are. Consider, for example, the models
studied in [23]. The first model considered there ([23], equations (1)–(3)) uses a saturation
term θ of the form (1−εS)S that is inconsistent with assumption (11) as per model 4 discussed
above. However, that particular model is known to suffer from the existence of three solution
regimes under dc operating conditions, and so cannot possibly be stationary-point stable. It is
interesting to note that the later model considered there ([23], equations (11)–(13)) is consistent
with assumptions (11)–(19). The conclusion there of a single solution regime is consistent
with an application of the main result here. (Note that the particular model employs three
radiative carrier relaxation terms, which corresponds to terms of the form of

∑3
i=1 ζiψi(x2)

and
∑3

i=1 ψi(x2) in (9) and (10). The main result here may be easily extended to cover this
slightly more general form of (9) and (10).)

5. Proof of main result

The proof of the main result is presented via the following basic steps:

(I) Well-posedness

(i) Positive invariance of R2
>0;

(ii) Local existence and uniqueness of solutions;
(iii) Well-posedness.

(II) Input-to-state stability;

9
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(III) Stationary point stability

(i) Existence of a unique stationary point;
(ii) Exclusion of periodic orbits;

(iii) Stationary-point stability.

5.1. Well-posedness

5.1.1. Positive invariance of R2
>0. As the right-hand side of (9) and (10) form a continuous

mapping on R2
>0, any solution of the initial value problem associated with (20) must be

absolutely continuous. Consequently, in order to show that the open positive orthant R2
>0 is

positively invariant, it is sufficient to show that no such solution can cross the boundary ∂R2
�0

of the positive orthant. To this end, let L, c, ζ ∈ R>0 denote real constants as per assumptions
(14), (16) and (19), respectively. Given any u ∈ R>0 fixed, define the sets Oδ

1,Oδ
2 ⊂ R2

>0,

Oδ
1 :=

{
x ∈ R2

>0

∣∣x1 � ϒ−1
1

(
ζψ(δ)

1 +
(−φ(δ)

L

))
, x2 � δ

}
Oδ

2 := {
x ∈ R2

>0

∣∣x2 � δ
}

where δ ∈ (0, δ∗] is arbitrary, and

δ∗ := min

{
c

2
, (ϒ2 + ψ)−1 ◦

(
1

2
u

)}
. (21)

Here, assumptions (16)–(18) guarantee that δ∗ ∈ R>0 is well defined. Assumptions (12),
(14)–(16), (18) and (19) in turn guarantee that sets Oδ

1,2 are both non-empty. For convenience,
set

e1 :=
[

1
0

]
, e2 :=

[
0
1

]
and let F : R2

>0 × R>0 �→ R2 denote the vector field defined by the right-hand side of the
generic model equations (9) and (10),

F(x, u) :=
[

θ(x1)φ(x2) − ϒ1(x1) + ζψ(x2)

−θ(x1)φ(x2) − ϒ2(x2) − ψ(x2) + u

]
, x =

[
x1

x2

]
. (22)

Then,

min
x∈Oδ

1,x2�c
〈F(x, u), e1〉 = min

x∈Oδ
1,x2�c

{θ(x1)φ(x2) − ϒ1(x1) + ζψ(x2)}
� min

x∈Oδ
1

{θ(x1)φ(c) − ϒ1(x1) + ζψ(c)}

� ζψ(c) − ζψ(δ)

1 +
(−φ(δ)

L

)
> 0 (23)

as (21) and assumption (15) imply that φ(δ) � φ(δ∗) < 0 and ψ(δ) � ψ(δ∗) < ψ(c). Note
that assumptions (11), (12) and (16) have been applied implicitly here. By assumptions (13)
and (14), ϒ1(s) > Lθ(s) for all s ∈ R>0, so that

min
x∈Oδ

1,x2<c
〈F(x, u), e1〉 = min

x∈Oδ
1,x2<c

{−θ(x1) [−φ(x2)] − ϒ1(x1) + ζψ(x2)}

> min
x∈Oδ

1,x2<c

{
−ϒ1(x1)

(
1 +

(−φ(x2)

L

))
+ ζψ(x2)

}
10
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� min
x2∈[δ,c)

{
ζψ(x2) − ζψ(δ)

1 +
(−φ(δ)

L

) (
1 +

(−φ(x2)

L

))}
� ζψ(δ) − ζψ(δ) = 0. (24)

Hence, combining (23) and (24),

min
x∈Oδ

1

〈F(x, u), e1〉 > 0. (25)

Similarly, with u ∈ R>0, assumptions (11), (15)–(18) combined with the definition of Oδ
2 and

(21) imply that

min
x∈Oδ

2

〈F(x, u), e2〉 = min
x∈Oδ

2

{θ(x1) [−φ(x2)] − (ϒ2 + ψ) (x2) + u}
� min

x1∈R>0

{θ(x1) [−φ(δ)] − (ϒ2 + ψ) (δ) + u}
� min

x1∈R>0

{
θ(x1) [−φ(δ)] + 1

2u
}

> 0. (26)

Let Bδ denote the boundary of Oδ
1 ∪ Oδ

2 that resides in the open positive orthant R2
>0,

Bδ := (
∂Oδ

1 ∪ ∂Oδ
2

) ∖
∂R2

�0 (27)

and let nδ denote the set-valued map,

nδ(x) :=

⎧⎪⎨⎪⎩
{e1} x ∈ Oδ

1

∖
Oδ

2

{e1, e2} x ∈ Oδ
1 ∩ Oδ

2

{e2} x ∈ Oδ
2

∖
Oδ

1.

When evaluated at any x ∈ Bδ, nδ(x) defines a unit normal to boundary Bδ , pointing into the
interior of R2

>0

∖ (
Oδ

1 ∪ Oδ
2

)
. Hence, by application of (25) and (26),

u ∈ R>0 �⇒ lim inf
δ→0+

inf
x∈Bδ

min
η∈nδ(x)

〈F(x, u), η〉 � 0.

That is, for positive inputs u ∈ R>0, should an absolutely continuous solution to (9) and (10)
exist, the open positive orthant R>0 must be positively invariant with respect to the flow thus
defined. That is,

x◦ ∈ R2
>0 and u : R�0 �→ R>0 �⇒ μ(t, x◦; u) ∈ R2

>0 ∀ t � 0 (28)

where μ(·) denotes the flow of (9) and (10).

5.1.2. Local existence and uniqueness of solutions. Local existence and uniqueness of
solutions can be demonstrated on finite time intervals using standard local Lipschitz arguments
[21]. In particular, it is sufficient to show that the right-hand side of (9) and (10) defines a
locally Lipschitz continuous mapping in x, uniformly in u on R2

>0 × R�0. This may easily
be demonstrated via [21] (lemma 2.3) and assumptions (11), (12), (15), (17) and (18). Given
the standard semigroup and continuity properties [21] of trajectories x(·) associated with
the generic model (20), the time horizons on which unique solutions exist locally may be
concatenated and thus the time horizon of existence and uniqueness maximally extended
(see [31], for example).

11
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5.1.3. Well-posedness. With uniqueness of solutions inherited from the local domain, well-
posedness boils down to the preclusion of finite escape times, where a finite escape time
corresponds to a discontinuity of the second kind in the trajectory x(·) of (20). A finite escape
time exists if, given an input u, there exists a t̄ ∈ (0,∞) such that limt→t̄− |x(t)| = ∞.
Finite escape times may thus be excluded if for each bounded input u there exists a positively
invariant bounded subset of R2

>0 to which all trajectories initialized in R2
>0 converge in finite

time. Using arguments developed in the general framework of input-to-state stable systems
[19, 32], it may be shown that such a subset exists, and hence a finite escape time cannot (see
the argument preceding theorem 10.4.1 in [32]).

To this end, define the function V : R2
�0 �→ R�0 on the open positive orthant by

V (x) := |x|1 (29)

where | · |1 denotes the 1-norm on R2. As the open positive orthant is positively invariant,
the time derivative of V (x(t)) is well defined for each t for which the trajectory x(t) of the
generic model (20) exists. That is, (22) and (29) imply that

d

dt
V (x(t)) = ∇xV (x(t)) · F(x(t), u(t))

= −ϒ1(x1(t)) − ϒ2(x2(t)) − (1 − ζ )ψ(x2(t)) + u(t), (30)

where x(·) exists. Define the function γ : R�0 �→ R�0 by

γ (s) := min

(
ϒ1

(
s

2

)
, ϒ2

(
s

2

)
+ (1 − ζ ) ψ

(
s

2

))
and note that γ ∈ K∞ ∩ C1(R>0) by assumptions (12) and (17)–(19). A triangle inequality
holds for K∞ functions, so that

γ (x1 + x2) � γ (2x1) + γ (2x2)

� min (ϒ1 (x1) , ϒ2 (x1) + (1 − ζ ) ψ (x1))

+ min (ϒ1 (x2) , ϒ2 (x2) + (1 − ζ ) ψ (x2))

� ϒ1(x1) + ϒ2(x2) + (1 − ζ ) ψ(x2). (31)

Combining (29), (30) and (31) yields the inequality

d

dt
V (x(t)) � −γ (V (x(t))) + u(t), (32)

which holds wherever x(·) exists. Define the function χ : R�0 �→ R�0,

χ(s) := γ −1 (2s) . (33)

Note that χ ∈ K∞ as γ ∈ K∞. Hence, for any bounded input function u : R�0 �→ R>0 and
any fixed M ∈ [‖u‖∞,∞), the following open set is well defined,

�M := {
x ∈ R2

>0

∣∣V (x) < χ (M)
}
. (34)

Suppose that x◦ ∈ R2
>0

∖
�M . As ‖u‖∞ ∈ (0,M],

−γ (V (x◦)) + u(0) � −γ (V (x◦)) + ‖u‖∞
� −γ (V (x◦)) + χ−1 (V (x◦))
= − 1

2γ (V (x◦)) < 0. (35)

In particular, if x◦ ∈ ∂�M := �M ∩ R2
>0, (32) and (35) imply that V (x(t)) < V (x◦) = χ (M)

for all t � 0. As R2
>0 is positively invariant, this implies that �M ⊂ R2

>0 is also positively
invariant. Consequently, as �M is bounded, any trajectory x(·) initialized at x◦ ∈ �M cannot
escape to infinity.

12
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In general, for any x◦ ∈ R2
>0

∖
�M , (32) and (35) imply that |x(t)|1 = V (x(t)) < V (x◦) =

|x◦|1 for all t � 0 such that x(t) �∈ �M . That is, any trajectory x(·) initialized at x◦ ∈ R2
>0

∖
�M

also cannot escape to infinity. Indeed, as it is also the case that for x(t) �∈ �M ,

−γ (V (x(t))) + u(t) � −M < 0,

integration of the inequality (32), together with positive invariance of �M , implies that any

such trajectory must enter �M at some time t1 � |x◦|1− 1
2 χ(M)

M
< ∞ and never leave.

5.2. Input to state stability

ISS follows as a direct consequence of (29) and (32), see for example [19].

5.3. Stationary point stability

5.3.1. Existence of a unique stationary point. For a constant input function u(t) ≡ U ∈ R>0

for all t � 0, any stationary point X of the dynamics of (20) must satisfy the pair of algebraic
equations defined by 0 = F(X,U), mapping F given by (22). In order to show that these
equations define a unique stationary point for any U ∈ R>0, the approach taken generalizes
that of [23]. In particular, the two aforementioned algebraic equations are recast in terms of
two C1 functions Q± : R>0 �→ R>0 for each U ∈ R>0, yielding

X1 = Q+(X2), X1 = Q−(X2).

By demonstrating that Q+ is strictly increasing and Q− is strictly decreasing, the existence of
a unique stationary point X can be thus proved. To this end, for U ∈ R>0 fixed, define

f1(x) := θ (x1) φ(x2) − ϒ1 (x1) + ζψ(x2),

f2(x) := −ϒ1 (x1) − ϒ2(x2) − (1 − ζ ) ψ(x2) + U

and note that
∂f1

∂x1
(x) = −�(x), �(x) := ϒ ′

1(x1) − θ ′(x1)φ(x2)

∂f2

∂x1
(x) = −ϒ ′

1(x1) < 0.

(36)

Here, the inequality follows by assumptions (11) and (13). In particular, note that

ϒ ′
1(s) = (ϒ1(s)/θ(s)) θ ′(s) + θ(s) (ϒ1/θ)′ (s) > 0 ∀ s ∈ R>0. (37)

To show that a similar inequality holds for the first of these partial derivatives, note that by
assumptions (11), (12), (13), (18), (19),

θ(x1)�(x) = θ(x1)ϒ
′
1(x1) − θ ′(x1) [θ(x1)φ(x2)]

= θ(x1)ϒ
′
1(x1) − θ ′(x1) [ϒ1(x1) − ζψ(x2)]

= [θ(x1)]
2 (ϒ1/θ)′ (x1) + θ ′(x1)ζψ(x2) > 0 (38)

for all x ∈ R2
>0. Hence, �(x) > 0 for all x ∈ R2

>0. With both partial derivatives thus
sign definite on R2

>0, the implicit function theorem thus (implicitly) defines the functions
Q± : R>0 �→ R>0 according to the corresponding equations f1(x) = 0 = f2(x), so that

0 = θ(Q+(ξ))φ(ξ) − ϒ1 (Q+(ξ)) + ζψ(ξ), (39)

0 = −ϒ1(Q−(ξ)) − ϒ2(ξ) − (1 − ζ )ψ(ξ) + U. (40)

13
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To deduce the nature of Q− defined by (40), note that ϒ−1
1 ∈ K∞ by assumption (12).

Consequently (40) may be solved explicitly for Q−(ξ), yielding

Q−(ξ) = ϒ−1
1 (U − (ϒ2 + (1 − ζ )ψ)(ξ)). (41)

Assumptions (17)–(19) imply that (ϒ2 + (1 − ζ )ψ)−1 ∈ K∞, so that inspection of (41) reveals
that

Q− : (0, (ϒ2 + (1 − ζ )ψ)−1(U)) �→ (0, ϒ−1
1 (U))

is a strictly decrescent function.
To deduce the nature of Q+(ξ), first note that continuous differentiability of θ,ϒ1 and ψ

(by assumptions (11), (12) and (18)) may be combined with the continuous differentiability
of Q+ (from the implicit function theorem) to permit differentiation of (39) with respect to ξ .
This yields

0 = θ(Q+(ξ))φ′(ξ) − [ϒ ′
1 (Q+(ξ)) − θ ′ (Q+(ξ)) φ(ξ)]Q′

+(ξ) + ζψ ′(ξ)

= θ(Q+(ξ))φ′(ξ) − �(Q+(ξ), ξ)Q′
+(ξ) + ζψ ′(ξ),

where � is as defined in (36). Inequality (38) then yields the implication[
Q+(ξ)

ξ

]
∈ R2

>0 �⇒ �(Q+(ξ), ξ) > 0 �⇒ Q′
+(ξ) � 0. (42)

With a view to applying this implication, note that for any ξ ∈ (0, c], (39) is obviously
equivalent to

ϒ1(Q+(ξ)) + [−φ(ξ)]θ(Q+(ξ)) = ζψ(ξ)

in which −φ(ξ) � 0 by assumptions (15) and (16). Assumptions (11), (12), (18) and (19)
then yield the additional implication

ξ ∈ (0, c] �⇒ Q+(ξ) ∈ (0, ϒ−1
1 (ζψ(ξ))] ⊂ R>0. (43)

Combining (42) and (43) yields

ξ ∈ (0, c] �⇒ Q+(ξ) > 0, Q′
+(ξ) � 0.

That is, Q+ is positive and non-decreasing on (0, c]. This conclusion may be extended to R>0

via (42) by integration of Q′
+(ξ) beyond ξ = c.

To complete the proof of existence of a unique stationary point for U ∈ R>0, note by
(41) and (43), there exists a ξ ∈ R>0 sufficiently small such that Q+(ξ) < Q−(ξ). Thus, as
Q− is strictly decrescent and Q+ is non-decreasing, there exists a unique ξ ∗ ∈ R>0 such that
Q+(ξ

∗) = Q−(ξ ∗), thereby defining the unique stationary point

X :=
[
Q+(ξ

∗)
ξ ∗

]
≡

[
Q−(ξ ∗)

ξ ∗

]
∈ R2

>0.

5.3.2. Exclusion of closed orbits. It was shown in section 5.1 above that for bounded
inputs there exists a bounded open set, denoted here by �, that is positively invariant and
attracting, with any trajectory of the generic model (20) ultimately confined to � in finite time.
Consequently, no closed orbits, or segments of closed orbits, can exist in R2

>0

∖
� for such

bounded inputs. Hence, for a closed orbit to exist in R2
>0 in the presence of such bounded

inputs, that orbit must be confined entirely to �. Here, it will be shown that such orbits
cannot exist in � in the presence of constant inputs, thereby excluding the existence of closed
orbits anywhere in R2

>0 for constant inputs. This will be achieved via application of Dulac’s

14
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x2

positively invariant

and attracting

D2

D1 ∩ D2

Ω ≡ D1 ∪ D2

D1

Transversal

x1

Figure 1. Excluding closed orbits from �.

criterion [20], which states the following:

Consider the dynamical system ẋ = f (x). Suppose there exists a continuously
differentiable function g : R2 �→ R such that ∇ · (gf ) is continuous and non-zero
on some simply connected domain D ⊂ R2. Then, no closed orbit can lie entirely in
domain D.

Here, we consider f (x) := F(x,U), where F is defined by (22) and U ∈ R>0 is the constant
input. � := �M ⊂ R2

>0 is fixed by selecting a specific M ∈ [U,∞). Finding a function g

such that the conditions of Dulac’s criterion are satisfied for the dynamical system of (20) on
the entirety of � is non-trivial. So, in order to exclude closed orbits from �, two overlapping
domains D1 and D2 are considered, with D1 ∪ D2 ≡ � and D1\D2, D2\D1 non-empty. By
excluding closed orbits from lying entirely within D1 or entirely within D2, it follows that for
a closed orbit to exist in D1 ∪ D2, that closed orbit must repeatedly traverse D1 ∩ D2 to visit
the sets D1\D2 and D2\D1 ad infinitum. However, this possibility can be excluded by the
construction of a transversal through D1 ∩ D2, across which the flow is unidirectional. This
argument is illustrated in figure 1, the details of which follow.

Define the constants ĉ, M̂ ∈ R>0 by

ĉ := φ−1

(
L

2

)
, (44)

M̂ := χ−1 (2ĉ) + U, (45)

where L is defined by assumption (14), ĉ > c > 0 exists by assumptions (15) and (16),
U ∈ R>0 is the constant input applied to (20), and χ is defined by (33). Note that M̂ > U .
Using these constants, define the open sets �, D1, D2 ⊂ R2

>0 by

� := �M̂, �(·) defined by (34), (46)

D1 := {x ∈ � | x2 > c} , (47)

15
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D2 := {x ∈ � | x2 < ĉ} , (48)

where it is obvious that D1 ∪ D2 ≡ � as c < ĉ. It is also straightforward to show that the sets
D1, D2, D1\D2, D2\D1 and D1 ∩ D2 are all non-empty. For example, selecting x ∈ (

ĉ
4 , 5ĉ

4

)
,

(29) and (45) imply that V (x) < 2ĉ < χ(M̂), so that x ∈ D1\D2. In order to apply Dulac’s
criterion in D1 and D2 with F as defined in (22), first define

d(x,U) := ∇ · [g(x)F (x,U)]

= g(x) [∇ · F(x,U)] + [∇g(x)] · F(x,U)

= g(x)[θ ′(x1)φ(x2) − θ(x1)φ
′(x2) − ϒ ′

1(x1) − ϒ ′
2(x2) − ψ ′(x2)]

+
∂g

∂x1
(x) [θ(x1)φ(x2) − ϒ1(x1) + ζψ(x2)]

+
∂g

∂x2
(x) [−θ(x1)φ(x2) − ϒ2(x2) − ψ(x2) + U ] . (49)

Implicit in this definition is the application of assumptions (11), (12), (15), (17) and (18). Note
that if g : R2

>0 �→ R>0 is restricted to positive mappings, (49) implies that

d(x,U)

g(x)
=

[
θ ′(x1) +

θ(x1)

g(x)

∂g

∂x1
(x)

]
φ(x2) −

[
ϒ ′

1(x1) +
ϒ1(x1)

g(x)

∂g

∂x1
(x)

]
−

[
θ(x1)φ

′(x2) + ϒ ′
2(x2) + ψ ′(x2) − ζ

∂g

∂x1
(x)ψ(x2)

]
+

[
1

g(x)

∂g

∂x2
(x) [−θ(x1)φ(x2) − ϒ2(x2) − ψ(x2) + U ]

]
. (50)

Exclusion of entire orbits from D1: select g : R2
>0 �→ R>0 as

g(x) = g1(x1) := 1

ϒ1(x1) + θ(x1)

and note that g is well-defined on R2
>0. Observe that for all x ∈ R2

>0, assumptions (11) and
(12) imply that

∂g

∂x1
(x) = − [g1(x1)]

2 (ϒ ′
1(x1) + θ ′(x1)) < 0,

∂g

∂x2
(x) = 0

so that third and fourth bracketed terms in (50) are respectively positive and zero on R2
>0

by assumptions (11), (12), (15) and (17)–(19). Hence, rewriting the first two (remaining)
bracketed terms of (50) yields the inequality

d(x,U)

g(x)
<

1

g1(x1)
[(g1θ)′ (x1)φ(x2) − (g1ϒ1)

′(x1)].

Note that

(g1θ)′

g1
= − θ2

ϒ1 + θ

(
θϒ ′

1 − ϒ1θ
′

θ2

)
= −g1θ

2 (ϒ1/θ)′ ,

(g1ϒ1)
′

g1
= θ2

ϒ1 + θ

(
θϒ ′

1 − ϒ1θ
′

θ2

)
= g1θ

2 (ϒ1/θ)′ .

Consequently,

d(x,U)

g(x)
< −g1(x) [θ(x1)]

2 (ϒ1/θ)′ (x1) [φ(x2) + 1] < 0 (51)
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for all x1 > 0 and x2 > c, where assumptions (11)–(13), (15) and (16) have been applied.
Hence, by definition (47), it is clear from (51) and Dulac’s criterion that no closed orbits can
exist entirely within D1.

Exclusion of entire orbits in domain D2: select g : R2
>0 �→ R>0 to be any positive constant.

Equation (50) yields

d(x,U)

g(x)
=

[
θ ′(x1)φ(x2) − 1

2
ϒ ′

1(x1)

]
−

[
θ(x1)φ

′(x2) +
1

2
ϒ ′

1(x1) + ϒ ′
2(x2) + ψ ′(x2)

]
< θ ′(x1)φ(x2) − 1

2
ϒ ′

1(x1)

by assumptions (11), (15), (17) and (18). Note that assumptions (11)–(14) imply that

ϒ ′
1 >

(
ϒ1

θ

)
θ ′ > Lθ ′

so that
d(x,U)

g(x)
< θ ′(x1)

[
φ(x2) − L

2

]
< 0 (52)

for all x1 > 0 and x2 < ĉ, where ĉ is as per (44). Hence, by definition (48), it is clear from
(52) and Dulac’s criterion that no closed orbits can exist entirely within D2.

A transversal in D1 ∩ D2: in order to construct a transversal for the dynamics of (20) in

D1 ∩ D2, first define n̂ := [0
1

]
and IX : R>0 × R>0 �→ R, X ∈ R>0 fixed, by

IX(ξ, U) :=
〈
n̂, F

([
ξ

X

]
, U

)〉
= −θ(ξ)φ(X) − ϒ2(X) − ψ(X) + U.

With ĉ defined as per (44), boundedness of � along with assumptions (11) and (15)–(18)
guarantee the existence of the following positive constants:

K := sup
ξ∈R>0

{
θ(ξ)

∣∣∣∣[ξ

·
]

∈ �

}
, (53)

δ∗ := [ϒ2 + ψ + Kφ]−1 ◦ [ϒ2 + ψ]

(
c +

ĉ − c

4

)
− c, (54)

U ∗ := [ϒ2 + ψ + Kφ](c + δ∗), (55)

X∗
2 := c +

δ∗

2
, (56)

X̂∗
2 := ĉ − δ∗

2
, (57)

where K, c ∈ R>0. As ĉ > c by assumptions (15) and (16),

δ∗ < [ϒ2 + ψ + Kφ]−1 ◦ [ϒ2 + ψ + Kφ]

(
c +

ĉ − c

4

)
− c = ĉ − c

4

δ∗ > [ϒ2 + ψ + Kφ]−1 ◦ [ϒ2 + ψ](c) − c

= [ϒ2 + ψ + Kφ]−1 ◦ [ϒ2 + ψ + Kφ](c) − c = 0

17
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so that

δ∗ ∈
(

0,
ĉ − c

4

)
. (58)

It is then straightforward to show that x2 = X∗
2 is a transversal for the dynamics of (20) when

U � U ∗, as for all ξ ∈ R>0 such that
[ ξ

X∗
2

] ∈ �, (53) and assumptions (15), (17) and (18)
imply that

U � U ∗ �⇒ IX∗
2
(ξ, U) = −θ(ξ)φ(X∗

2) − ϒ2(X
∗
2) − ψ(X∗

2) + U

� − [ϒ2 + ψ + Kφ]

(
c +

δ∗

2

)
+ [ϒ2 + ψ + Kφ] (c + δ∗)

> 0.

Similarly, it is straightforward to show that x2 = X̂∗
2 is a transversal for the dynamics of (20)

when U < U ∗, as for all ξ ∈ R>0 such that
[ ξ

X̂∗
2

] ∈ �, assumptions (11), (12), (15), (16)–(18)

imply that

U < U ∗ �⇒ IX̂2
(ξ, U) = −θ(ξ)φ(X̂∗

2) − ϒ2(X̂
∗
2) − ψ(X̂∗

2) + U

< −θ(ξ)φ(X̂∗
2) − [ϒ2 + ψ]

(
ĉ − δ∗

2

)
+ [ϒ2 + ψ + Kφ] (c + δ∗)

= −θ(ξ)φ(X̂∗
2) − [ϒ2 + ψ]

(
ĉ − δ∗

2

)
+ [ϒ2 + ψ]

(
c +

ĉ − c

4

)
< −θ(ξ)φ(X̂∗

2) − [ϒ2 + ψ]

(
c +

ĉ − c

4

)
+ [ϒ2 + ψ]

(
c +

ĉ − c

4

)
< 0.

Note that both transversals are contained entirely within D1 ∩ D2 by (56)–(58). Hence, it
follows that no closed orbits can cross D1 ∩ D2. As there can be no closed orbits entirely
within D1, entirely within D2, or that cross D1 ∩ D2, it follows that no closed orbits can lie
within D1 ∪ D2 ≡ �. As no closed orbits or segments of closed orbits can exist in R2

>0

∖
�, it

follows that no closed orbits can exist in R2
>0 as a result of the constant input U ∈ R>0 being

applied to the generic model (20). As U is arbitrary here, this conclusion also holds true for
any constant input.

5.3.3. Stationary-point stability. As the phase space of (20) is two dimensional, the range
of dynamical behaviours for constant inputs is restricted to sinks, sources, saddles and closed
orbits [20]. Most notably, chaotic behaviour is not possible. Restricting attention to the
positive orthant, as no closed orbit can exist, behaviour is necessarily limited to sinks, sources
or saddles, each of which must be located at a stationary point. As there is only one stationary
point in the positive orthant, only one of these behaviours can be exhibited. As the existence
of an unstable manifold in the positive orthant is precluded by ISS, and such a manifold is
implied by the existence of a saddle or source, it follows that the stationary point must indeed
be a sink, which must be asymptotically stable (theorem 4.14, [20]). As all other behaviours
are excluded, the domain of attraction for this sink must be the entire positive orthant.
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6. Conclusion

A reasonably general rate equation based model was presented for capturing the structure
of common laser diode models. It was shown that in the presence of reasonably general
constraints on the functions defining this model, and on the currents that may be applied
as inputs to that model, that physically reasonable stability properties may be guaranteed
independently of the particular values of many of the parameters involved. In particular,
stability of the standard model and Purcell enhanced model [2] may be verified generally,
including all positive values of the Purcell factor F, whilst those utilizing 1 − εS saturation
terms [24, 27] cannot.
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